
NAG Fortran Library

Thread Safety

1 Multithreaded Applications and Thread Safety

A thread is a basic entity to which an operating system allocates CPU time. A thread has its own registers,
stack and process resources. Threads provide a convenient way of allowing an application to maximise its
usage of CPU resources in a system, especially in a multiple processor configuration. A routine is termed
‘thread safe’ if it can be called safely from two or more concurrently running threads.

The remainder of this document describes thread safety within the context of the NAG Fortran Library and
provides guidelines for calling Library routines from multithreaded applications.

2 Thread Safety and the NAG Fortran Library

It is essential that you refer to the Users’ Note for details of whether the Library has been compiled in a
manner that facilitates the use of multiple threads. Also, your local site may have decided only to install a
Library of thread safe routines; please contact your site installer for details of the installation.

2.1 Thread Safe Constructs

In a Fortran 77 context the constructs that prohibit thread safety are, potentially, DATA, SAVE, COMMON
and EQUIVALENCE. This is because such constructs define data that may be shared by different threads,
perhaps leading to unwanted interactions between them: for example, the possibility that one thread may
be modifying the contents of a COMMON block at the same time as another thread is reading it. You are
therefore advised to use such constructs with great care and to avoid their use wherever possible within
multithreaded applications.

At Mark 20 of the NAG Fortran Library the thread safe provision has been significantly enhanced by

(a) eliminating unsafe constructs wherever possible to make the majority of routines safe for use in
multithreaded applications;

(b) providing equivalent thread safe routines with the same functionality where complete removal of
unsafe constructs would affect interface design. Two approaches have been taken to provide thread
safe equivalents; see Section 2.2 for further details.

See Section 3.2 for a list of the remaining routines that are currently thread unsafe with no thread safe
equivalent. It should be noted that it is always safe to call the NAG Library in one thread (only) of a
multithreaded application.

2.2 Library Routines with Thread Safe Equivalents

At Mark 20 of the NAG Fortran Library two approaches have been taken to provide thread safe
equivalents to routines containing unsafe constructs. In the first approach a close connection between the
original routine and the thread safe equivalent can be maintained, allowing the two routines to appear as a
pair and share the same root name. In the second approach more fundamental changes in interface design
have been made such that the correspondence between a routine and its thread safe equivalent cannot be
maintained through the root name.

2.2.1 Routine and thread safe equivalent sharing the same root name

At Mark 20 of the NAG Fortran Library there are pairs of routines which share the same root name, for
example, the routines E04UCF and E04UCA. Each routine in the pair has exactly the same functionality,
except that one of them has additional parameters in order to make it safe for use in multithreaded
applications. The routine that is safe for use in multithreaded applications has a different last character in
the name in place of the usual character (typically ‘A’ instead of ‘F’). Such pairs are documented via one
routine document. If the pair of routines contain a routine argument in their interface then the routine with
additional parameters will have parameter arrays that enable you to pass information to the routine

Introduction Thread Safety

[NP3546/20A] SAFETY.1



argument without the need for COMMON blocks. In some cases the routine with additional parameters
may need to be initialised by a separate initialisation routine; this requirement will be clearly documented.

2.2.2 Other routines with thread safe equivalents

You will note that some of the equivalent routines listed in Section 3.1 do not share the same root name as
the original routine containing unsafe constructs. In these cases you are advised to consult the relevant
chapter introduction and routine documents for further information. You are further advised to consult the
relevant entry in the document ‘Advice on Replacement Calls for Withdrawn/Superseded Routines’.

2.3 Routines with Routine Arguments

Some Library routines require you to supply a routine and to pass the name of the routine as an argument
in the call to the Library routine. For many of these Library routines, the supplied routine interface
includes array arguments specifically for you to pass information to the supplied routine. However, there
remain some Library routines for which you may need to supply your provided routine with more
information than can be given via the interface argument list. In such circumstances it is usual to define a
COMMON block containing the required data in the supplied routine (and also in the calling program). It
is safe to do this only if no data referenced in the defined COMMON block is updated within the supplied
routine (thus avoiding the possibility of simultaneous modification by different threads). Where separate
calls are made to a Library routine by different threads and these calls require different data sets to be
passed through COMMON blocks to user-supplied routines, these routines and the COMMON blocks
defined within them should have different names.

You are advised to check, in the relevant chapter introduction, whether the Library routines you intend to
call have equivalent reverse communication interfaces. These have been designed specifically for problems
where user-supplied routine interfaces are not flexible enough for a given problem, and their use should
eliminate the need to provide data through COMMON blocks.

2.4 Input/Output

The Library contains routines for setting the current error and advisory message unit numbers (X04AAF
and X04ABF). These routines use the SAVE statement to retain the values of the current unit numbers
between calls. It is therefore not advisable for different threads of a multithreaded program to set the
message unit numbers to different values. A consequence of this is that error or advisory messages output
simultaneously may become garbled, and in any event there is no indication of which thread produces
which message. You are therefore advised always to select the ‘soft failure’ mechanism without any error
message (IFAIL ¼ þ1, see Section 2.3 of the Essential Introduction) on entry to each NAG routine called
from a multithreaded application; it is then essential that the value of IFAIL be tested on return to the
application.

A related problem is that of multiple threads writing to or reading from files. You are advised to make
different threads use different unit numbers for opening files and to give these files different names
(perhaps by appending an index number to the file basename). The only alternative to this is for you to
protect each write to a file or unit number; for example, by putting each WRITE statement in a critical
region.

2.5 Implementation Issues

In some implementations of the NAG Library calls are made to vendor BLAS and/or LAPACK Library
routines. Although NAG perform tests to ensure that these calls are behaving correctly on multiple
threads, NAG cannot guarantee the thread safety of the vendor BLAS and LAPACK routines. You are
advised to refer to the Users’ Note for details of whether the Library is to be linked with vendor BLAS
and/or LAPACK Libraries.

3 Lists of Thread Unsafe Routines

3.1 Thread Unsafe Routines with Thread Safe Equivalents

At Mark 20 the routines listed in the following table are not thread safe in any implementations, but do
have equivalents that are safe to use in multithreaded applications (also listed).

Thread Safety NAG Fortran Library Manual

SAFETY.2 [NP3546/20A]



Routine Thread Safe
Equivalent

Routine Thread Safe
Equivalent

Routine Thread Safe
Equivalent

C05PDF C05PDA D03PCF D03PCA D03PDF D03PDA
D03PHF D03PHA D03PJF D03PJA D03PPF D03PPA
E04ABF E04ABA E04BBF E04BBA E04CCF E04CCA
E04DGF E04DGA E04DJF E04DJA E04DKF E04DKA
E04MFF E04MFA E04MGF E04MGA E04MHF E04MHA
E04NCF E04NCA E04NDF E04NDA E04NEF E04NEA
E04NFF E04NFA E04NGF E04NGA E04NHF E04NHA
E04NKF E04NKA E04NLF E04NLA E04NMF E04NMA
E04UCF E04UCA E04UDF E04UDA E04UEF E04UEA
E04UFF E04UFA E04UGF E04UGA E04UHF E04UHA
E04UJF E04UJA E04UNF E04USA E04UQF E04UQA
E04URF E04URA E04USF E04USA E04XAF E04XAA
E04ZCF E04ZCA F11BAF F11BDF F11BBF F11BEF
F11BCF F11BFF F11GAF F11GDF F11GBF F11GEF
F11GCF F11GFF G05CAF G05KAF G05CBF G05KBF
G05CCF G05KCF G05CFF not required G05CGF not required
G05DAF G05LGF G05DBF G05LJF G05DCF G05LNF
G05DDF G05LAF G05DEF G05LKF G05DFF G05LLF
G05DHF G05LCF G05DJF G05LBF G05DKF G05LDF
G05DPF G05LMF G05DRF G05MKF G05DYF G05MAF
G05DZF G05KEF G05EGF G05PAF G05EHF G05NAF
G05EJF G05NBF G05EWF G05PAF G05EXF G05MZF
G05EYF G05MZF G05EZF G05LZF G05FAF G05LGF
G05FBF G05LJF G05FDF G05LAF G05FEF G05LEF
G05FFF G05LFF G05FSF G05LPF G05GAF G05QAF
G05GBF G05QBF G05HDF G05PCF G05ZAF not required

3.2 Thread Unsafe Routines with No Thread Safe Equivalents

At Mark 20 the routines listed in the following table are not thread safe in any implementations and do
not as yet have thread safe equivalents.

C05NDF D01GBF D01GCF D01GDF D02BGF D02BHF
D02BJF D02CJF D02EJF D02GAF D02GBF D02HAF
D02HBF D02JAF D02JBF D02KAF D02KDF D02KEF
D02LAF D02LXF D02LYF D02LZF D02MZF D02NBF
D02NCF D02NDF D02NGF D02NHF D02NJF D02NMF
D02NNF D02NSF D02NTF D02NUF D02PCF D02PDF
D02PVF D02PWF D02PXF D02PYF D02PZF D02QFF
D02QGF D02QWF D02QXF D02QYF D02QZF D02RAF
D02SAF D02XJF D02XKF D03PEF D03PFF D03PKF
D03PLF D03PRF D03PSF D03PUF D03PVF D03PWF
D03PXF D03RAF D03RBF D05BDF D05BEF E01SBF
F04YCF F04ZCF G01DHF G01EMF G01FMF G01HBF
G01JDF G03FCF G04DBF G08EAF G08EBF G08ECF
G08EDF G10BAF G13DCF H02BBF H02BFF H02BVF
H02CBF H02CCF H02CDF H02CEF H02CFF H02CGF
X04AAF X04ABF

Introduction Thread Safety

[NP3546/20A] SAFETY.3 (last)


	SAFETY
	1 Multithreaded Applications and Thread Safety
	2 Thread Safety and the NAG Fortran Library
	2.1 Thread Safe Constructs
	2.2 Library Routines with Thread Safe Equivalents
	2.2.1 Routine and thread safe equivalent sharing the same root name
	2.2.2 Other routines with thread safe equivalents

	2.3 Routines with Routine Arguments
	2.4 Input/Output
	2.5 Implementation Issues

	3 Lists of Thread Unsafe Routines
	3.1 Thread Unsafe Routines with Thread Safe Equivalents
	3.2 Thread Unsafe Routines with No Thread Safe Equivalents


	Fortran Library, Mark 20
	Foreword
	Introduction
	Essential Introduction
	Mark 20 News
	Thread Safety
	Library Contents
	Withdrawn Routines
	Advice on Replacement Calls for Withdrawn/Superseded Routines
	Acknowledgements

	Indexes
	Keywords in Context
	GAMS Index

	Implementation-specific Information
	Users' Note

	A02 - Complex Arithmetic
	C02 - Zeros of Polynomials
	C05 - Roots of One or More Transcendental Equations
	C06 - Summation of Series
	D01 - Quadrature
	D02 - Ordinary Differential Equations
	D02M/N Introduction

	D03 - Partial Differential Equations
	D04 - Numerical Differentiation
	D05 - Integral Equations
	D06 - Mesh Generation
	E01 - Interpolation
	E02 - Curve and Surface Fitting
	E04 - Minimizing or Maximizing a Function
	F - Linear Algebra
	F01 - Matrix Factorizations
	F02 - Eigenvalues and Eigenvectors
	F03 - Determinants
	F04 - Simultaneous Linear Equations
	F05 - Orthogonalisation
	F06 - Linear Algebra Support Routines
	F07 - Linear Equations (LAPACK)
	F08 - Least-squares and Eigenvalue Problems (LAPACK)
	F11 - Sparse Linear Algebra
	G01 - Simple Calculations on Statistical Data
	G02 - Correlation and Regression Analysis
	G03 - Multivariate Methods
	G04 - Analysis of Variance
	G05 - Random Number Generators
	G07 - Univariate Estimation
	G08 - Nonparametric Statistics
	G10 - Smoothing in Statistics
	G11 - Contingency Table Analysis
	G12 - Survival Analysis
	G13 - Time Series Analysis
	H - Operations Research
	M01 - Sorting
	P01 - Error Trapping
	S - Approximations of Special Functions
	X01 - Mathematical Constants
	X02 - Machine Constants
	X03 - Inner Products
	X04 - Input/Output Utilities
	X05 - Date and Time Utilities


